首页> 外文OA文献 >Second order Implicit-Explicit Total Variation Diminishing schemes for the Euler system in the low Mach regime
【2h】

Second order Implicit-Explicit Total Variation Diminishing schemes for the Euler system in the low Mach regime

机译:低马赫状态下欧拉系统的二阶隐式-显式总变分减小方案

代理获取
本网站仅为用户提供外文OA文献查询和代理获取服务,本网站没有原文。下单后我们将采用程序或人工为您竭诚获取高质量的原文,但由于OA文献来源多样且变更频繁,仍可能出现获取不到、文献不完整或与标题不符等情况,如果获取不到我们将提供退款服务。请知悉。

摘要

In this work, we consider the development of implicit explicit total variation diminishing (TVD) methods (also termed SSP: strong stability preserving) for the compressible isentropic Euler system in the low Mach number regime. The scheme proposed is asymptotically stable with a CFL condition independent from the Mach number and it degenerates in the low Mach number regime to a consistent discretization of the incompressible system. Since, it has been proved that implicit schemes of order higher than one cannot be TVD (SSP) [29], we construct a new paradigm of implicit time integrators by coupling first order in time schemes with second order ones in the same spirit as highly accurate shock capturing TVD methods in space. For this particular class of schemes, the TVD property is first proved on a linear model advection equation and then extended to the isentropic Euler case. The result is a method which interpolates from the first to the second order both in space and time, which preserves the monotonicity of the solution, highly accurate for all choices of the Mach number and with a time step only restricted by the non stiff part of the system. In the last part, we show thanks to one and two dimensional test cases that the method indeed possesses the claimed properties.
机译:在这项工作中,我们考虑了在低马赫数状态下可压缩的等熵Euler系统的隐式显式总变化减小(TVD)方法(也称为SSP:强稳定性保持)的开发。所提出的方案在独立于马赫数的CFL条件下是渐近稳定的,并且在低马赫数状态下退化为不可压缩系统的一致离散。既然已经证明了高阶隐式方案不可能是TVD(SSP)[29],我们通过将时间方案中的一阶与二阶方案相结合,以高度一致的精神构造了一个隐式时间积分器的新范例。在太空中准确捕捉震动的TVD方法。对于这种特定类型的方案,首先在线性模型对流方程上证明TVD属性,然后将其扩展到等熵Euler情况。结果是一种在空间和时间上从一阶到二阶进行插值的方法,该方法保留了解决方案的单调性,对于所有马赫数的选择都非常准确,并且时间步长仅受该值的非刚性部分限制。系统。在最后一部分中,由于一维和二维测试用例,我们证明了该方法确实具有要求保护的属性。

著录项

相似文献

  • 外文文献
  • 中文文献
  • 专利
代理获取

客服邮箱:kefu@zhangqiaokeyan.com

京公网安备:11010802029741号 ICP备案号:京ICP备15016152号-6 六维联合信息科技 (北京) 有限公司©版权所有
  • 客服微信

  • 服务号